6-(SUBSTITUTED METHYLENE) PENEMS, POTENT BROAD SPECTRUM INHIBITORS OF BACTERIAL β -LACTAMASE

V. CHIRAL 1,2,3-TRIAZOLYL DERIVATIVES

ISABEL S. BENNETT, GERALD BROOKS*, NIGEL J. P. BROOM, STEPHEN H. CALVERT, KENNETH COLEMAN and IRENE FRANÇOIS

SmithKline Beecham Pharmaceuticals, Chemotherapeutic Research Centre, Brockham Park, Betchworth, Surrey, RH3 7AJ, UK

(Received for publication November 17, 1990)

Structure-activity relationships in a series of (5R)-6-triazolylmethylene penems with potent β -lactamase inhibitory activity are described. In most cases, their *in vitro* synergistic activity with amoxycillin is superior to that of clavulanic acid, sulbactam and tazobactam (YTR 830). Against an *Escherichia coli* TEM-1 infection in mice, the compounds showed a broad range of potencies; an optimum polarity was found, however, which gave maximum potency.

Earlier papers in this series^{1 \sim 4)} have described the synthesis and biological properties of a series of racemic 6-(substituted methylene)penems. Of particular interest was the triazolylmethylene penem (5b), and this paper outlines some further work on a series of triazolyl derivatives with a chiral centre at C-5.

Chemistry

The (5R,6Z) penems (5) were prepared using two routes. Route A (Scheme 1) has been described for the preparation of $5b^{5}$ and is shown schematically in full elsewhere⁶: it requires a 1,2,3-triazolecarboxylic

Reagents: (i) lithium diisopropylamide, THF, -70° C; (ii) *n*-BuLi, THF, -70° C; (iii) **8**; (iv) NaBH₄, THF, EtOH; (v) see ref 6; (vi) 5% Pd - C, H₂, aq dioxan, NaHCO₃. Tr = triphenylmethyl.

Reagents: (i) Ph₂NLi, THF, -70° C; (ii) **9**; (iii) Ac₂O; (iv) Zn, NH₄Cl, (CH₃)₂NCH₂CH₂N(CH₃)₂-2HCl, DMF; (v) AlCl₃, anisole, CH₂Cl₂, -40° C; (vi) aq Na₂HPO₄.

ester (8) and either of the chiral azetidinones (1 or 2). Route B (Scheme 2) has also been described for the preparation of $5b^{6 \sim 9}$; it requires a 1,2,3-triazolecarboxaldehyde (9) and the (6S)-bromopenem (6)⁹.

The triazole esters $(8b \sim 8c)$ were prepared by alkylation of 8a. The methyl group positions in $8b \sim 8d$ were determined as follows: 8b was identified by comparison with an authentic sample⁵; 8c and 8d were progressed by route A to penems (4c and 4d) and the structures identified by NOE studies. In 4d, a strong NOE between 10-*N*-methyl and 8-CH was observed, but in 4c no NOE to 11-*N*-methyl

Table 1. Structures of triazole esters, penems and intermediates.

	R		R
a	Н	n	CH-COOPNB
b	CH ₃	р	CH ₂ COONa
e	DMT	q	$N(CH_3)_2$
f	Et	r	OCH ₃
g	Allyl	s	OH
h	<i>n</i> -Pr	t	OPMB
j	Cyclopropyl	u	CH ₂ CH ₂ OH
k	CH ₂ CF ₃	v	CH ₂ CH ₂ OSi(CH ₃) ₂ Bu ^t
l	CH ₂ COOCH ₂ Ph	w	(CH ₂) ₃ OH
m	CH2COOSiPh2But	x	(CH ₂) ₃ OSi(CH ₃) ₂ Bu ^t

This table refers to compounds 3, 4, 5, 7, 8 and 9 (a, b and $e \sim x$). For c and d, see separate structures. The DMT group in e is written in the N-12 position for convenience, although its position is unknown.

	I ₅₀ (µg/ml)					A p	Amoxycillin MIC (μ g/ml) in the presence of 1 μ g/ml of inhibitor					
Class	E.cl. Ia	P.m. II	E.co. TEM-1 III	K.p. IV	E.co. OXA-1 V	E.cl. Ia	P.m. II	E.co. TEM-1 III	K.p. IV	E.co. OXA-1 V	in vivo E.co. TEM-1	
5b	0.001	0.007	0.001	0.001	0.001	1	2	2	2	2	1.00	
5c	0.019	0.010	0.002	0.003	0.002	64	1	2	4	2	< 0.05	
5d	0.055	3.500	0.017	0.032	0.002	128	> 512	64	64	8	< 0.05	
Clavulanic acid	> 50.0	0.020	0.036	0.019	0.780	> 512	16	. 8	4	> 512	0.20	
Sulbactam	2.8	0.08	1.9	10.0	3.2	256	64	128	64	>512	< 0.05	
Tazobactam	0.02	0.02	0.02	0.1	1.15	256	16	8	16	> 512	0.20	
Amoxycillin alone						512	>512	>512	256	>512	< 0.05	

Table 2. Summary of biological activity of three isomeric N-methyl triazolylmethylene penem derivatives.

Class: Enzyme classification based on RICHMOND and SYKES¹⁸⁾.

Abbreviations: E.cl., Enterobacter cloacae; P.m., Proteus mirabilis; E.co., Escherichia coli; K.p., Klebsiella pneumoniae.

could be seen (for numbering, see structure 4c). Triazole esters (8f, 8g, 8j~8l, 8q~8s, 8u and 8w) were prepared by an extension of the method of STOJANOVIC and ARNOLD¹⁰), by which ethyl α -formyldiazoacetate was condensed with amines, 1,1-dimethyl hydrazine and oxyamines. Hydroxy derivatives (8s, 8u and 8w) required protection as 8t, 8v and 8x. Triazole (8l) reacted with the anion from 1 mainly at the benzyl ester; it was therefore converted into 8m.

Triazole aldehydes (9t, 9v and 9x) were obtained from 8t, 8v and 8x by a standard reduction-oxidation sequence. Penem esters (4e, and 7v and 7x) required deprotection to 4a, and 7u and 7w before de-esterification. In the cases of 4n and 7t the de-esterification conditions served to remove both protecting groups. De-esterification of 4g also resulted in alkyl group hydrogenation to give 5h.

Biology

Table 2 shows the effects on biological activity of altering the position of the methyl group on the triazole ring. An N-10[†] methyl substituent (5d) resulted in a marked loss of synergistic activity with amoxycillin, as expected from the previously established structure-activity relationships in the 5-membered heterocyclic series³), and also resulted in poor *in vivo* activity relative to the N-12-methylated derivative (5b). The N-11-methylated derivative (5c) showed reduced synergistic activity against the Class 1 β -lactamase of *Enterobacter aerogenes*, but synergistic activity against all other β -lactamases was similar to that seen with 5b. The good *in vitro* activity of 5c against the TEM-1 enzyme was not evident *in vivo*, however.

Thus, the N-12-methyl derivative (5b) was clearly the most active of the three, and a number of compounds were synthesised which contained other small alkyl groups at the N-12 position (Table 3). There was very little difference in the synergistic activity with amoxycillin shown by these compounds, and all twelve proved better broad spectrum synergists than clavulanic acid, sulbactam or tazobactam (YTR 830). This increased potency was most noticeable against organisms producing the Class 1 or OXA-1 enzyme. All derivatives, except perhaps the parent (5a), were reasonably stable to human kidney homogenate, and none showed excessively high binding to human serum. When tested *in vivo* against an *Escherichia coli* TEM-1 infection in mice, however, these compounds revealed a very broad range of

[†] For numbering, see structure 4c.

THE JOURNAL OF ANTIBIOTICS

	Ar	noxycillin M 1 µ	IC (µg/ml) in µg/ml of inhib	Human	Human	Relative		
Class	<i>E.cl.</i> Ia	P.m. II	E.co. TEM-1 III	K.p. IV	E.co. OXA-1 V	binding (%)	stability (%)	potency in vivo
5a	2	16	2	2	8	79	45	0.64
5b	2	4	1	2	4	72	61	1.00
5f	2	4	2	2	4	72	72	0.28
5h	32	2	2	4	8	81	67	0.04
5j	4	2	4	4	8	80	82	0.17
5k	4	64.	8	2	4	78	67	0.14
5p	32	8	4	2	8	87	72	0.43
5q	2	4	8	8	4	73	69	0.13
5r	4	2	4	2	2	74	56	0.43
5s	4	16	8	8	16	72	90	< 0.03
5u	4	4	2	2	4	56	69	1.00
5w	16	4	4	2	4	59	74	0.50
Clavulanic acid	> 512	16	8	4	> 512	20	100	0.20
Sulbactam	256	64	128	64	> 512		100	< 0.03
Tazobactam	256	16	8	16	> 512	20	NT	0.20
None	512	> 512	>512	256	> 512	17	100	< 0.03

Table 3. Biological activity of N-12-substituted triazolylmethylene penems.

Class: Enzyme classification according to RICHMOND and SYKES¹⁸⁾.

NT: Not tested.

Abbreviations: See footnote in Table 2.

potencies with only 7 out of 12 showing a greater potency than clavulanic acid, and only one compound (**5u**) showing potency equal to that of **5b**. The log k' parameter¹¹⁾ can be used as a measure of the polarity of these derivatives, and a plot of log k' against log relative potency gave a curve (Fig. 1) which could best be described using the Bilinear model of KUBINYI¹²⁾. The equation for this curve was found to be:

log relative potency

 $= 1.52 \log k' - 3.29 \log(0.29k' + 1) + 0.34$

(multiple r-square

=0.895; std. dev. of regression =0.44)

Fig. 1. Correlation between polarity (log k') and

The N-12-methyltriazolyl derivative (5b) is one of two compounds falling within the area of maximal

potency on the curve, and the biological activity of

this derivative is described in more detail in a separate publication¹³⁾.

Experimental

 β -Lactamase inhibition studies were carried out on isolated enzyme preparations as previously

VOL. 44 NO. 9

THE JOURNAL OF ANTIBIOTICS

described¹⁴⁾.

MICs were determined in microtitre plates by serial dilution of amoxycillin in broth, followed by addition of inhibitor $(1 \,\mu g/ml)$ and organism (approx $2 \times 10^6 \,\text{cfu/ml})$ as previously described¹⁴).

Serum binding was carried out using the method previously described⁴).

Stability to human kidney homogenate was determined at 37°C as described previously⁴). Since compounds were chiral, treatment with *Bacillus cereus* II enzyme was not necessary.

The 50% curative dose (CD_{50}) determinations were performed in mice. The organism (*E. coli* E96) was suspended in 3% hog gastric mucin +1% carboxymethylcellulose at $100 \times LD_{50}$, and 0.5ml of suspension was injected ip into groups of five mice. Compounds were administered subcutaneously at 2 mg/kg with varying doses of amoxycillin at 1 and 5 hours post-infection. Survivors were recorded over a 4-day period. The CD₅₀ of amoxycillin in the presence of inhibitor was calculated using log probit analysis. Compound **5b** was used as control in every experiment, and the data were normalised by conversion to relative potencies thus:

 CD_{50} of compound **5b**/ CD_{50} of test compound.

Log k' was calculated from the reverse phase HPLC Rt's using the method of MIYAKE et al.¹¹).

All compounds were chromatographically pure as shown by TLC on Merck Silica gel 60 F_{254} plates. Chromatography of intermediates was carried out using Merck Silica gel 60, eluting with EtOAc - hexane mixtures, and of sodium salts using either Bio-Gel P-2 (route A) or Diaion HP-20SS (route B). HPLC was carried out using Beckman equipment with an Ultrasphere ODS column, eluting with MeOH - pH 7.4 phosphate buffer. Instrumentation for IR, NMR, UV and mass spectra and mp's is as described in previous papers of this series^{1~4}. Optical rotations of all chiral compounds were measured on a Perkin-Elmer 141 polarimeter. All new compounds gave satisfactory IR, NMR, MS and/or microanalysis, and UV where applicable.

Azetidinone (1) ($[\alpha]_D^{20} - 55^{\circ}C$ (c 1, CHCl₃)) was prepared from (4*R*)-4-tritylthioazetidinone¹⁵) using a silylation procedure described for the corresponding racemic compound¹⁶). Bromoazetidinone (2) has been described⁵). Triazole (8a) was prepared by the method of KLEIN *et al.*¹⁷).

Full experimental details are in the patent literature for both routes A^{5} and B^{9} . A minor modification to route A was that KF-MeOH treatment of **3m** caused double desilylation, but re-esterification with NaH-PNB bromide and continuation of the synthesis produced (**4n**). In route B some (*E*)-isomer was produced along with 7; this was removed either chromatographically or by crystallisation of 7. Geometries were assigned as already described⁷.

Ethyl N-Methyl-1,2,3-triazole Carboxylates (8b~8d)

Triazole (8a) (10 g, 71 mmol) in DMF (120 ml) was ice-cooled and treated with K_2CO_3 (6 g, 43.5 mmol) and MeI (4.67 ml, 75 mmol). After stirring 24 hours at room temperature, the DMF was evaporated and the residue taken up in EtOAc water. The EtOAc was further washed with $Na_2S_2O_3$ soln and water, dried (MgSO₄) and evaporated. Chromatography separated the three isomeric *N*-methyl compounds: 8b (1.99 g, 18%, Rf 0.15 in EtOAc - hexane, 2:3), 8c (4g, 36%, Rf 0.76) and 8d (3.2 g, 29%, Rf 0.66) were identified as described in the chemistry section.

For **8b**: ¹H NMR (CDCl₃) δ 1.40 (3H, t, CH₂CH₃), 4.20 (3H, s, N-CH₃), 4.44 (2H, q, CH₂CH₃), 8.19 (1H, s, NCH=).

For 8c: ¹H NMR (CDCl₃) δ 1.40 (3H, t, CH₂CH₃), 4.30 (3H, s, N-CH₃), 4.45 (2H, q, CH₂CH₃), 8.09 (1H, s, NCH=).

For 8d: ¹H NMR (CDCl₃) δ 1.41 (3H, t, CH₂CH₃), 4.36 (3H, s, N-CH₃), 4.45 (2H, q, CH₂CH₃), 8.16 (1H, s, NCH=).

Ethyl N-(4,4'-Dimethoxytrityl)-1,2,3-triazole-4-carboxylate (8e)

Triazole (8a) (7.05 g, 50 mmol) in THF (200 ml) was ice-cooled and treated with Et₃N (6.95 ml, 50 mmol), 4-dimethylaminopyridine (200 mg) and 4,4'-dimethoxytrityl (DMT) chloride (17 g, 50 mmol). After stirring at room temperature for 1 hour, the mixture was diluted with EtOAc, washed with 0.5 N HCl and brine, dried and evaporated. Chromatography provided the major isomer, of unknown regio-chemistry (15.9 g, 72%), as microcrystals (EtOAc - hexane): MP 123~125°C. ¹H NMR (CDCl₃) δ 1.35

 $(3H, t, J = 11 Hz, CH_2CH_3)$, 3.79 (6H, s, $2 \times O - CH_3$), 4.40 (2H, q, J = 11 Hz, CH_2CH_3), 6.7 ~ 7.5 (13H, m, Ar-H), 8.17 (1H, s, -NCH=).

Protection of Triazoles (8s, 8u and 8w)

Ethyl 1-p-Methoxybenzyloxy-1,2,3-triazole-4-carboxylate (8t)

Triazole (8s) (6 g, 38.2 mmol) in DMF (40 ml) was treated with diazabicycloundecene (DBU) (7.45 ml, 50 mmol) and a solution of *p*-methoxybenzyl (PMB) bromide (prepared from PBr₃ and PMB alcohol 50 mmol and used crude) in DMF (10 ml). After 1 hour the soln was diluted with EtOAc, washed with 0.2 N HCl and water, dried and evaporated. Chromatography and crystallisation (EtOAc - hexane) gave colourless plates (9.5 g, 90%): MP 102~103°C. ¹H NMR (CDCl₃) δ 1.38 (3H, t, J=11 Hz, CH₂CH₃), 3.85 (3H, s, OCH₃), 4.44 (2H, q, J=11 Hz, CH₂CH₃), 5.51 (2H, s, OCH₂Ar), 6.99 (2H, d, J=7 Hz, Ar-H), 7.39 (2H, d, J=7 Hz, Ar-H), 7.84 (1H, s, -NCH=).

Anal Calcd for C₁₃H₁₅N₃O₄: C 56.3, H 5.4, N 15.2. Found: C 56.4, H 5.7, N 15.5.

Ethyl 1-(2-tert-Butyldimethylsilyloxyethyl)-1,2,3-triazole-4-carboxylate (8v)

Triazole (8u) (23.9 g, 129 mmol) in DMF (250 ml) was treated with Et₃N (36.1 ml, 260 mmol), 4-dimethylaminopyridine (2 g) and *tert*-butyldimethylsilyl chloride (37.6 g, 260 mmol). After 3 hours the mixture was diluted with EtOAc, washed with 0.2 N HCl and water, dried and evaporated. Crystallisation (EtOAc - hexane) gave colourless plates (31 g, 80%): MP 51 ~ 52°C. ¹H NMR (CDCl₃) δ 0.88 (9H, s, *tert*-Bu), 1.40 (3H, t, J = 11 Hz, CH₂CH₃), 4.00 (2H, t, J = 7 Hz) and 4.57 (2H, t, J = 7 Hz) (OCH₂CH₂N), 4.44 (2H, q, J = 11 Hz, CH₂CH₃), 8.22 (1H, s, -NCH=).

Anal Calcd for C₁₃H₂₅O₃Si: C 52.2, H 8.4, N 14.1.

Found: C 52.4, H 8.5, N 14.2.

Compound (8x) was similarly prepared.

¹H NMR (CDCl₃) δ 0.91 (9H, s, *tert*-Bu), 1.40 (3H, t, J = 11 Hz, CH₂CH₃), 2.22 (2H, m, CH₂CH₂CH₂), 3.68 (2H, t, J = 9 Hz) and 4.62 (2H, t, J = 9 Hz) (CH₂CH₂CH₂), 4.45 (2H, q, J = 11 Hz, CH₂CH₃), 8.23 (1H, s, -NCH=).

Anal Calcd for C₁₄H₂₇N₃O₃Si: C 53.7, H 8.6, N 13.4. Found: C 53.8, H 8.8, N 13.5.

Ethyl 1-(*tert*-Butyldiphenylsilyloxycarbonylmethyl)-1,2,3-triazole-4-carboxylate (8m)

Benzyl ester (81) (10 g, 34.6 mmol) in THF (200 ml) with 10% Pd-C (1 g) was shaken under H₂ at atmospheric pressure until H₂ uptake stopped (15 minutes). The catalyst was filtered off and the filtrate ice-cooled, treated with Et₃N (5.3 ml, 38 mmol) and *tert*-butyldiphenylsilyl chloride (10 ml, 38 mmol) and left 20 minutes. The solvent was evaporated, the residue taken up in EtOAc and filtered. The filtrate was evaporated to about 80 ml and left to crystallise to provide colourless needles (13.9 g, 92%): MP 157~ 159°C.

IR v_{max} (Nujol) cm⁻¹ 1742, 1730, 1225; ¹H NMR (CDCl₃) δ 1.07 (9H, s, *tert*-Bu), 1.37 (3H, t, J=11 Hz, CH₂CH₃), 4.42 (2H, q, J=11 Hz, CH₂CH₃), 5.34 (2H, s, NCH₂), 7.3~7.8 (10H, m, Ar-H), 8.28 (1H, s, -NCH=).

Anal Caled for C₂₃H₂₇N₃O₄Si: C 63.2, H 6.2, N 9.6. Found: C 62.9, H 6.3, N 9.6.

<u>1-p-Methoxybenzyloxy-1,2,3-triazole-4-carboxaldehyde (9t): Typical Triazole-4-carboxaldehyde Syn</u>thesis

Reduction of Ester to Alcohol: Ester (8t) (3 g, 10.8 mmol) in THF (40 ml) was refluxed with LiBH₄ (0.5 g) for 30 minutes. The mixture was ice-cooled, quenched with excess 5% aqueous citric acid and extracted with EtOAc. The extract was dried and evaporated. Chromatography and crystallisation (EtOAc - hexane) gave colourless plates of 1-PMB-1,2,3-triazol-4-methanol (2.14 g, 84%): MP 74~75°C.

IR v_{max} (Nujol) cm⁻¹ 3240 (br, OH), 1618, 1590, 1518, 1260; ¹H NMR (CDCl₃) δ 3.80 (3H, s, OCH₃), 4.23 (1H, br s, OH), 4.68 (2H, br s, CH₂OH), 5.37 (2H, s, OCH₂Ar), 6.91 (2H, d, J = 7 Hz, Ar-H), 7.2 ~ 7.4

VOL. 44 NO. 9

(3H, m, Ar-H and -NCH=).

Anal Calcd for C₁₁H₁₃N₃O₃: C 56.2, H 5.5, N 17.9. Found: C 55.9, H 5.7, N 17.6.

Oxidation of Alcohol: The above triazolemethanol (1.3 g, 5.5 mmol) in CH_2Cl_2 (25 ml) was stirred vigorously with pyridinium dichromate (**9g**) for 3 hours, diluted with EtOAc (300 ml) and filtered through Celite. Evaporation of the filtrate and chromatography gave **9t** (0.59 g, 46%), which crystallised (EtOAc - hexane) as colourless plates: Melting range $87 \sim 95^{\circ}\text{C}$.

IR ν_{max} (Nujol) cm⁻¹ 1695, 1617, 1519, 1260; ¹H NMR (CDCl₃) δ 3.82 (3H, s, OCH₃), 5.48 (2H, s, OCH₂Ar), 6.93 (2H, d, J=7 Hz, Ar-H), 7.29 (2H, d, J=7 Hz, Ar-H), 7.76 (1H, s, -NCH=), 10.04 (1H, s, CHO).

Anal Calcd for C₁₁H₁₁N₃O₃: C 56.7, H 4.7, N 18.0. Found: C 56.6, H 4.3, N 18.0.

DMT Removal from Penem (4e)

Penem (4e) (0.57 g, 0.83 mmol) in CH₂Cl₂(20 ml) and PrOH (20 ml) was ice-cooled and treated dropwise over 10 minutes with formic acid (25 ml). CH₂Cl₂ (30 ml) and water (100 ml) were added, followed by solid NaHCO₃ until basic. The organic layer was separated, dried and evaporated. Chromatography and crystallisation (EtOAc - hexane) provided (4a) as yellow microcrystals (0.21 g, 66%): MP 159~162°C; $[\alpha]_D^{20}$ +466° (*c* 0.5, DMSO); IR ν_{max} (Nujol) cm⁻¹ 3260, 1790, 1785, 1770, 1715, 1610, 1560, 1520; ¹H NMR (DMSO-*d*₆) δ 5.40 (2H, ABq, OCH₂Ar), 6.71 (1H, s, 5-CH), 7.39 (1H, s, 8-CH), 7.72 (2H, d, Ar-H), 7.90 (1H, s, 2-CH), 8.2~8.4 (3H, m, 13-H and Ar-H), 15.70 (1H, br s, NH); UV λ_{max}^{EndH} (E¹_{6m}) nm 280 (21,350).

 Anal Calcd for C₁₆H₁₁N₅O₅S:
 C 49.9, H 2.9, N 18.2, S 8.3.

 Found:
 C 49.9, H 2.9, N 18.2, S 8.1.

Desilvlation of Penem (7v)

Penem (7v) (18.4 g, 35 mmol) in THF (110 ml) and AcOH (90 ml) was treated with tetrabutylammonium fluoride in THF (70 ml, 1 M) and stirred 3 hours. The soln was diluted with EtOAc, washed with water and aqueous NaHCO₃, dried and evaporated. The solid was briefly (2 minutes) boiled with EtOAc - CHCl₃ (1:1) (100 ml), left 2 minutes and the crystals filtered off to provide pure (5*R*), (6*Z*) penem (7u), (5.05 g, 35%) as yellow needles: MP 137~140°C; $[\alpha]_{D}^{20} + 420^{\circ}$ (c 0.5, DMSO).

IR v_{max} (Nujol) cm⁻¹ 3500 (br, OH), 1778, 1695; UV λ_{max}^{EtOH} nm (ϵ) 288 (25,100); ¹H NMR (DMSO) δ 3.7~3.9 (5H, m, OCH₃ and CH₂CH₂OH), 4.47 (2H, t, J = 5 Hz, CH₂CH₂OH), 5.10 (1H, t, J = 5 Hz, OH), 5.16 (2H, s, OCH₂Ar), 6.68 (1H, d, J = 0.7 Hz, 5-CH), 6.95 (2H, d, J = 8 Hz, Ar-H), 7.3~7.4 (3H, m, Ar-H and 8-CH), 7.74 (1H, s, 2-CH), 8.45 (1H, s, 13-CH).

Anal Caled for C₁₉H₁₈N₄O₅S: C 55.1, H 4.4, N 13.5, S 7.7. Found: C 55.1, H 4.3, N 13.7, S 7.7.

NOE Study of Penem Esters (4c and 4d)

Penem (4c) showed: ¹H NMR (DMSO- d_6) δ 4.23 (3H, s, N–CH₃), 5.40 (2H, ABq, OCH₂Ar), 6.65 (1H, d, J=1 Hz, 5-CH), 7.35 (1H, d, J=1 Hz, 8-CH), 7.71 (2H, d, Ar-H), 7.90 (1H, s, 2-CH), 8.06 (1H, s, 13-CH), 8.26 (2H, d, Ar-H). Irradiation of 5-CH produced NOE's to 2-CH and 13-CH; irradiation of 8-CH produced an NOE to 13-CH; irradiation of 13-CH produced NOE's to 5-CH and 8-CH; no NOE was seen to N-CH₃.

Penem (4d) showed: ¹H NMR (DMSO-*d*₆) δ 4.18 (3H, s, N–CH₃), 5.42 (2H, ABq, OCH₂Ar), 6.93 (1H, s, 5-CH), 7.57 (1H, s, 8-CH), 7.72 (2H, d, Ar-H), 7.98 (1H, s, 2-CH), 8.07 (1H, s, 13-CH), 8.26 (2H, d, Ar-H).

Irradiation of N-CH₃ produced an NOE to 8-CH; irradiation of 5-CH produced an NOE to 13-CH; these NOE's were also seen in the reverse direction. The absence of an NOE to N-CH₃ in 4c and its presence in 4d verifies these structures. Also, the fact that in 4c there are NOE's from 13-CH to both 5-CH and 8-CH indicates relatively free rotation of the triazole group; in 4d the absence of an NOE from 13-CH to 8-CH and from N-CH₃ to 5-CH indicates a relatively fixed triazole position due to steric hindrance by the N-CH₃.

Deprotection of Penem Esters (4 and 7) to Sodium Salts (5) Route A

A general deprotection of penem *p*-nitrobenzyl (PNB) esters is available^{2,5)}. The following were prepared by this method:

5a: $[\alpha]_{D}^{20}$ + 382° (c 0.45, H₂O); IR ν_{max} (KBr) cm⁻¹ 1739, 1680, 1654, 1583, 1558; UV $\lambda_{max}^{H_2O}$ nm (ε) 280 (14,050), 354 (1,250); ¹H NMR (D₂O) δ 6.58 (1H, s, 5-CH), 7.03 (1H, s, 2-CH), 7.25 (1H, s, 8-CH), 8.04 (1H, s, 13-CH); FAB-MS (matrix thioglycerol) m/z 295 (M + Na).

5b: Data under route B.

5c: $[\alpha]_D^{21} + 521^\circ$ (c 0.8, H₂O); IR ν_{max} (KBr) cm⁻¹ 1756, 1685, 1601, 1552; UV $\lambda_{max}^{H_2O}$ nm (ε) 284 (19,850), 368 (1,500); ¹H NMR (D₂O) δ 4.19 (3H, s, N-CH₃), 6.48 (1H, d, J=1 Hz, 5-CH), 7.01 (1H, s, 2-CH), 7.12 (1H, d, J=1 Hz, 8-CH), 7.83 (1H, s, 13-CH).

5d: $[\alpha]_D^{20} + 327^\circ$ (*c* 0.8, H₂O); IR ν_{max} (KBr) cm⁻¹ 1761, 1600, 1551; UV $\lambda_{max}^{H_2O}$ nm (*ε*) 284 (16,880), 370 (1,400); ¹H NMR (D₂O) δ 4.12 (3H, s, N-CH₃), 6.58 (1H, d, *J*=1 Hz, 5-CH), 7.04 (1H, s, 2-CH), 7.25 (1H, br s, 8-CH), 7.83 (1H, s, 13-CH).

5f: $[\alpha]_D^{24} + 429^\circ$ (c 1.0, H₂O); IR ν_{max} (KBr) cm⁻¹ 1763, 1688, 1601, 1552; UV $\lambda_{max}^{H_2O}$ nm (e) 283 (18,400), 363 (1,700); ¹H NMR (D₂O) δ 1.50 (3H, t, CH₂CH₃), 4.44 (2H, q, CH₂CH₃), 6.54 (1H, d, J=1 Hz, 5-CH), 7.01 (1H, s, 2-CH), 7.15 (1H, d, J=1 Hz, 8-CH), 8.18 (1H, s, 13-CH).

5h: $[\alpha]_D^{20} + 431^\circ$ (*c* 0.5, H₂O); IR v_{max} (KBr) cm⁻¹ 1760, 1685, 1600, 1552; UV $\lambda_{max}^{H_2O}$ nm (ε) 282 (21,710), 368 (1,830); ¹H NMR (D₂O) δ 0.84 (3H, t, *J*=7.4 Hz, CH₂CH₂CH₃), 1.8 ~ 2.0 (2H, m, CH₂CH₂CH₃), 4.39 (2H, t, *J*=7.4 Hz, CH₂CH₂CH₃), 6.62 (1H, d, *J*=1 Hz, 5-CH), 7.03 (1H, s, 2-CH), 7.20 (1H, d, *J*=1 Hz, 8-CH), 8.19 (1H, s, 13-CH).

5j: $[\alpha]_D^{23} + 410^\circ$ (*c* 1.1, H₂O); IR ν_{max} (KBr) cm⁻¹ 1761, 1686, 1601, 1552; UV $\lambda_{max}^{H_2O}$ nm (ε) 284 (20,100), 362 (1,650); ¹H NMR (D₂O) δ 1.1 ~ 1.3 (4H, m, cyclopropyl-H), 3.8 ~ 4.0 (1H, m, cyclopropyl-H), 6.40 (1H, d, J = 1 Hz, 5-CH), 7.01 (1H, s, 2-CH), 7.09 (1H, d, J = 1 Hz, 8-CH), 8.16 (1H, s, 13-CH).

5k: $[\alpha]_D^{19} + 277^\circ$ (c 1.0, H₂O); IR ν_{max} (KBr) cm⁻¹ 1760, 1690, 1603, 1552; UV $\lambda_{max}^{H_2O}$ nm (ε) 277 (16,710), 366 (1,360); ¹H NMR (D₂O) δ 5.32 (2H, q, J = 8.5 Hz, CH₂CF₃), 6.59 (1H, s, 5-CH), 7.03 (1H, s, 2-CH), 7.19 (1H, s, 8-CH), 8.39 (1H, s, 13-CH).

5p: $[\alpha]_D^{19} + 369^\circ$ (*c* 0.8, H₂O); IR ν_{max} (KBr) cm⁻¹ 1749, 1609, 1553; UV $\lambda_{max}^{H_2O}$ nm (*c*) 283 (19,800), 362 (1,900); ¹H NMR (D₂O) δ 5.07 (2H, s, CH₂COONa), 6.63 (1H, d, *J*=1 Hz, 5-CH), 7.04 (1H, s, 2-CH), 7.23 (1H, d, *J*=1 Hz, 8-CH), 8.17 (1H, s, 13-CH).

5q: $[\alpha]_D^{18} + 332^\circ$ (c 0.7, H₂O); IR ν_{max} (KBr) cm⁻¹ 1755, 1600, 1552; UV $\lambda_{max}^{H_2O}$ nm (ε) 282 (16,210), 366 (1,350); ¹H NMR (D₂O) δ 3.01 (6H, s, N(CH₃)₂), 6.59 (1H, d, J=0.8 Hz, 5-CH), 7.04 (1H, s, 2-CH), 7.16 (1H, d, J=0.8 Hz, 8-CH), 8.28 (1H, s, 13-CH).

5r: $[\alpha]_{D}^{20}$ +433° (c 0.8, H₂O); IR ν_{max} (KBr) cm⁻¹ 1762, 1688, 1599, 1553; UV $\lambda_{max}^{H_2O}$ nm (ε) 279 (18,690), 370 (1,660); ¹H NMR δ (D₂O) 4.28 (3H, s, OCH₃), 6.56 (1H, d, J=1 Hz, 5-CH), 7.03 (1H, s, 2-CH), 7.12 (1H, d, J=1 Hz, 8-CH), 8.31 (1H, s, 13-CH).

5s: $[\alpha]_{D}^{19} + 492^{\circ}$ (c 1.0, H₂O); IR ν_{max} (KBr) cm⁻¹ 1745, 1676, 1597, 1555; UV $\lambda_{max}^{H_2O}$ nm (ϵ) 211 (8,710), 296 (11,310); ¹H NMR (D₂O) δ 6.54 (1H, d, J = 1 Hz), 7.02 (1H, s, 2-CH), 7.08 (1H, d, J = 1 Hz, 8-CH), 7.59 (1H, s, 13-CH); FAB-MS (matrix glycerol) m/z 31t (M+Na).

Route B

<u>Typical De-esterification: Sodium (5R),(6Z)-6-[1-(2-Hydroxyethyl)-1,2,3-triazole-4-ylmethylene]</u>penem-3-carboxylate (**5u**)

Penem ester (7u) (3 g, 7.25 mmol) in CH₂Cl₂ (225 ml) was added dropwise over 10 minutes to a solution of AlCl₃ (2.43 g, 18.3 mmol) in CH₂Cl₂ (18 ml) and anisole (72 ml) at -40° C under argon. The resulting suspension was stirred a further 10 minutes and poured into aqueous Na₂HPO₄ (250 ml of 0.5 M), which was stirred vigorously 15 minutes and filtered through Celite, washing through with water. The layers of the filtrate were separated, the aqueous washed with ether and evaporated to low volume. Chromatography (Diaion HP-20SS, eluent water) and freeze-drying provided the title compound as a yellow solid (1.45 g, 63%): $[\alpha]_D^{20} + 431^{\circ}$ (c 0.9, H₂O); IR v_{max} (KBr) cm⁻¹ 1756, 1688, 1599; UV $\lambda_{max}^{H_{20}}$ nm (ε) 283 (21,260), 366 (1,880); ¹H NMR (D₂O) δ 3.98 (2H, t, J = 5 Hz), 4.56 (2H, t, J = 5 Hz), 6.61 (1H, d, J = 0.6 Hz, 5-CH), 7.04 (1H, s, 2-CH), 7.21 (1H, d, J = 0.6 Hz, 8-CH), 8.24 (1H, s, 13-CH); FAB-MS (matrix thioglycerol) m/z 339 (M + Na), 317 (M + H). Also prepared by route B: **5b**: $[\alpha]_D^{20} + 508^{\circ}$ (c 1.0, H₂O); IR ν_{max} (Nujol) cm⁻¹ 1750, 1687, 1664, 1588, 1559; UV $\lambda_{max}^{H_2O}$ nm (ε) 282 (24,600); ¹H NMR (D₂O) δ 4.13 (3H, s, NCH₃), 6.63 (1H, d, J=0.7 Hz, 5-CH), 7.06 (1H, s, 2-CH), 7.22 (1H, d, J=0.7 Hz, 8-CH), 8.17 (1H, s, 13-CH).

5w: $[\alpha]_D^{19} + 418^\circ$ (c 0.8, H₂O); IR ν_{max} (KBr) cm⁻¹ 1760, 1685, 1600, 1554; ¹H NMR (D₂O) δ 2.11 (2H, quintet, J = 6.5 Hz, CH₂CH₂CH₂), 3.55 and 4.50 (2 × 2H, 2t, J = 6.5 Hz, CH₂CH₂CH₂), 6.52 (1H, d, J = 1 Hz, 5-CH), 7.00 (1H, s, 2-CH), 7.14 (1H, d, J = 1 Hz, 8-CH), 8.18 (1H, s, 13-CH); UV $\lambda_{max}^{H_2O}$ nm (ϵ) 282 (20,000), 366 (1,750).

Acknowledgements

The authors wish to thank Dr. R. A. EDMONDSON, Mr. D. R. J. GRIFFIN and Miss P. A. UPSHON for biological data, and Messrs. J. W. TYLER, A. E. CUTMORE, G. POWELL, J. L. GOWER and G. D. RISBRIDGER for spectroscopic and analytical data.

References

- 1) BASKER, M. J. & N. F. OSBORNE: 6-(Substituted methylene)penems, potent broad spectrum inhibitors of bacterial β -lactamase. I. Racemic 6-ethylidenepenems. J. Antibiotics 43: 70 ~ 75, 1990
- BROOM, N. J. P.; K. COLEMAN, P. A. HUNTER & N. F. OSBORNE: 6-(Substituted methylene)penems, potent broad spectrum inhibitors of bacterial β-lactamase. II. Racemic furyl and thienyl derivatives. J. Antibiotics 43: 76~82, 1990
- 3) BENNETT, I.; N. J. P. BROOM, G. BRUTON, S. CALVERT, B. P. CLARKE, K. COLEMAN, R. EDMONDSON, P. EDWARDS, D. JONES, N. F. OSBORNE & G. WALKER: 6-(Substituted methylene)penems, potent broad spectrum inhibitors of bacterial β-lactamase. III. Structure-activity relationships of the 5-membered heterocyclic derivatives. J. Antibiotics 44: 331 ~ 337, 1991
- 4) BENNETT, I. S.; N. J. P. BROOM, K. COLEMAN, S. COULTON, P. D. EDWARDS, I. FRANCOIS, D. R. J. GRIFFIN, N. F. OSBORNE & P. M. WOODALL: 6-(Substituted methylene)penems, potent broad spectrum inhibitors of bacterial β-lactamase. IV. Kidney stability, serum binding and additional biological evaluation of racemic derivatives. J. Antibiotics 44: 338 ~ 343, 1991
- 5) OSBORNE, N. F. (Beecham): Novel compounds. Eur. Pat. Appl. 0 154 132 A, Sept. 11, 1985
- 6) BROOM, N. J. P.; S. COULTON, I. STIRLING-FRANÇOIS, J. B. HARBRIDGE, M. A. HARRIS, N. F. OSBORNE & G. WALKER: Synthesis and β-lactamase inhibitory activity of recent C6-substituted methylene penems. In Recent Advances in the Chemistry of β-Lactam Antibiotics. Special Publication No. 70. Eds., P. H. BENTLEY & R. SOUTHGATE, pp. 247~258, Royal Society of Chemistry, 1989
- 7) OSBORNE, N. F.; N. J. P. BROOM, S. COULTON, J. B. HARBRIDGE, M. A. HARRIS, I. STIRLING-FRANCOIS & G. WALKER: A novel and stereocontrolled synthesis of (5R) (Z)-6-(1-methyl-1,2,3-triazol-4-ylmethylene)penem-3-carboxylic acid, a potent broad spectrum β -lactamase inhibitor. J. Chem. Soc. Chem. Commun. 1989: 371~373, 1989
- 8) BENNETT, I. S.; G. BROOKS, N. J. P. BROOM, K. COLEMAN, S. COULTON, R. A. EDMONDSON, D. R. GRIFFIN, J. B. HARBRIDGE, N. F. OSBORNE, I. STIRLING-FRANÇOIS & G. WALKER: BRL 42715: A new potent, broad spectrum, β-lactamase inhibitor. Synthesis and structure-activity relationships of C6-substituted methylene penems. Program and Abstracts of the 28th Intersci. Conf. on Antimicrob. Agents Chemother., No. 118, p. 130, Los Angeles, Oct. 23 ~ 26, 1988
- COULTON, S.; J. B. HARBRIDGE, N. F. OSBORNE & G. WALKER (Beecham): Novel compounds and processes. Eur. Pat. Appl. 0 232 966 A1, Aug. 19, 1987
- STOIANOVIC, F. M. & Z. ARNOLD: Synthetic reactions of dimethylformamide XXXIII. Formylation of some aliphatic diazo compounds. Collect. Czech. Chem. Commun. 32: 2155~2160, 1967
- MIYAKE, K.; N. MIZUNO & H. TERADA: Method for determination of partition coefficients by high-performance liquid chromatography on an octadecylsilane column. Examination of its applicability. Chem. Pharm. Bull. 34: 4787 ~ 4796, 1986
- KUBINYI, H.: Quantitative structure-activity relationships. 7. The bilinear model, a new model for nonlinear dependence of biological activity on hydrophobic character. J. Med. Chem. 20: 625~629, 1977
- 13) COLEMAN, K.; D. R. J. GRIFFIN, J. W. J. PAGE & P. A. UPSHON: In vitro evaluation of BRL 42715, a novel β-lactamase inhibitor. Antimicrob. Agents Chemother. 33: 1580~1587, 1989
- 14) BROOKS, G.; K. COLEMAN, J. S. DAVIES & P. A. HUNTER: Synthesis and β-lactamase inhibitory activity of 9-(2-amidoethenylthio)-9-deoxy derivatives of clavulanic acid. J. Antibiotics 41: 892~898, 1988
- 15) MARTEL, A.; J.-P. DARIS, C. BACHAND, M. MENARD, T. DURST & B. BELLEAU: Nuclear analogues of β -lactam

antibiotics. XVII. Stereospecific synthesis of penem and carbapenem precursors. Can. J. Chem. 61: 1899 ~ 1902, 1983

- 16) MARTEL, A.; J. COLLERETTE, J. BANVILLE, J.-P. DARIS, P. LAPOINTE, B. BELLEAU & M. MENARD: Nuclear analogues of β -lactam antibiotics. XVI. Aldol condensations of N-protected 4-trithylthio-2-azetidinones. Can. J. Chem. 61: 613~618, 1983
- 17) KLEIN, R. S.; F. DA LAS HERAS, S. Y.-K. TAM, I. WEMPEN & J.J. FOX: Synthesis of a 1,2,3-triazolo[1,5-a]-1,3,5-triazine. A new heterocyclic system (1). J. Heterocycl. Chem. 13: 589~592, 1976
- 18) RICHMOND, M. H. & R. B. SYKES: The β -lactamases of Gram negative bacteria and their possible physiological role. Adv. Microbiol. Physiol. 9: 31~88, 1973